Railway maintenance is defined as the process of preserving a working condition of a railway equipment, along the track or related to rolling stocks, but there are actually different approach to mantain a railway asset or service..
With CBTC, moving blocks introduce to the concept of contiguous track, because the railway is represented as a single contiguous block, rather than a set of adjacent blocks. This means that the safe separation behind the preceding train is dynamically calculated based on the maximum operating speeds, braking curves and locations of the trains on the alignment. Also, in this way the capacity of the railway is extremely increased.
In railway signalling, capacity can be defined as the maximum number of trains that can pass a given location during a given time period at a specified level of reliability.
Strict safety requirements regulate the development of railway signalling and train control systems, covered by the CENELEC (European Committee for Electro-technical Standardization) EN 5012x rail standards
This paper will drive you across the different phases of the V-cycle for railway application, by explaining the key role of requirements during each phase and presenting the Systems Engineering activities required to support and control product development.
Track circuits contributes for train detection but also for the vehicle’s speed control, since the electrical signals used for train detection can be exchanged between wayside and on-board for the transmission of speed commands.
Since the train can be considered the transport mode of the future, national railway companies and European Union are currently working for a continuos upgrade of sustainable rail transportation, in order to guarantee the best quality of life to European citizens.
Railway signalling can be defined as all systems used to control railway traffic safely, essentially to prevent trains from colliding. Over the years knoledgment and technology able to satisfy this issue have been implemented. ERTMS/ETCS is currently the most common signalling system adopted in Europe.
The on-train system calculates an energy efficient speed profile to achieve the pre-planned or dynamically updated train timings, and generates detailed driver advice to follow the profile and achieve the timings. The control centre is responsible for conflict detection and calculation of new target train timings.
A research programme to achieve a more competitive and resource-efficient European transport system with a view to addressing major societal issues such as rising traffic demand,
congestion, security of energy supply and climate change.
The Citadis compact trams are specially designed to provide services on secondary lines and medium-sized networks. They also feature air-conditioning, real-time information system, a wide circulation corridor and double-doors at the front and at the back.
Based on automatic inductive power transfer, PRIMOVE liberates e-mobility from the constraints of cables, wires and plugs - making urban transport more flexible and convenient than ever before.
The main European cities are seeking quick costructions for light metro system, easy urban insertion and improved life-cycle costs. Among the most important rail suppliers, Alstom has launched the Axonis light metro system to meet these specific transport needs in fast-growing and densely-populated cities.
Bombardier to provide the London Crossrail Service, which will connect Maidenhead and Heathrow Airport in the west, to Abbey Wood and Shenfield in the east and is expected to open in 2018.
Since the train can be considered the transport mode of the future, national railway companies and European Union are currently working for a continuos upgrade of sustainable rail transportation, in order to guarantee the best quality of life to European citizens.