Railway maintenance is defined as the process of preserving a working condition of a railway equipment, along the track or related to rolling stocks, but there are actually different approach to mantain a railway asset or service..
With CBTC, moving blocks introduce to the concept of contiguous track, because the railway is represented as a single contiguous block, rather than a set of adjacent blocks. This means that the safe separation behind the preceding train is dynamically calculated based on the maximum operating speeds, braking curves and locations of the trains on the alignment. Also, in this way the capacity of the railway is extremely increased.
In railway signalling, capacity can be defined as the maximum number of trains that can pass a given location during a given time period at a specified level of reliability.
Strict safety requirements regulate the development of railway signalling and train control systems, covered by the CENELEC (European Committee for Electro-technical Standardization) EN 5012x rail standards
This paper will drive you across the different phases of the V-cycle for railway application, by explaining the key role of requirements during each phase and presenting the Systems Engineering activities required to support and control product development.
Track circuits contributes for train detection but also for the vehicle’s speed control, since the electrical signals used for train detection can be exchanged between wayside and on-board for the transmission of speed commands.
Since the train can be considered the transport mode of the future, national railway companies and European Union are currently working for a continuos upgrade of sustainable rail transportation, in order to guarantee the best quality of life to European citizens.
Railway signalling can be defined as all systems used to control railway traffic safely, essentially to prevent trains from colliding. Over the years knoledgment and technology able to satisfy this issue have been implemented. ERTMS/ETCS is currently the most common signalling system adopted in Europe.
Simulation is used before an existing system is altered or a new system built, to reduce the chances of failure to meet specifications, to eliminate unforeseen
bottlenecks, to prevent under or over-utilization of resources, and to optimize system performance.
After awarding a 1billion euro contract, Thales will deliver an Automatic Train Control (ATC) system for four of London Underground’s lines: District, Circle, Metropolitan and Hammersmith & City.
A Computer based Interlocking (CBI) system reduces operating and maintenance costs through the automation of route settings and direct links to station services
This paper will drive you across the different phases of the V-cycle for railway application, by explaining the key role of requirements during each phase and presenting the Systems Engineering activities required to support and control product development.
With this acquisition, ALSTOM improves its power in the UK railway market, by standing as one of the strongest competitors as part of Network Rail’s major signalling framework agreement.
The on-train system calculates an energy efficient speed profile to achieve the pre-planned or dynamically updated train timings, and generates detailed driver advice to follow the profile and achieve the timings. The control centre is responsible for conflict detection and calculation of new target train timings.
Trenitalia confirmed its Frecciarossa 1000 would begin running on June 14th of this year with it will be possible to go from Rome to Milan in just 2 hours and 20 minutes.
To validate the requirements, test plans are written that contain multiple test cases; each test case is based on one system state and tests some functions that is based on a related set of requirements.
Recent Comments